Gradient Estimates and Global Existence of Smooth Solutions to a Cross-Diffusion System
نویسندگان
چکیده
We investigate the global time existence of smooth solutions for the Shigesada-Kawasaki-Teramoto system of cross-diffusion equations of two competing species in population dynamics. If there are self-diffusion in one species and no cross-diffusion in the other, we show that the system has a unique smooth solution for all time in bounded domains of any dimension. We obtain this result by deriving global $W^{1,p}$-estimates of Calder\'{o}n-Zygmund type for a class of nonlinear reaction-diffusion equations with self-diffusion. These estimates are achieved by employing Caffarelli-Peral perturbation technique together with a new two-parameter scaling argument. Lausanne, le 2 juin 2014 BD/HMN/MM _______ Les séminaires qui ont lieu à la Section de Mathématiques sont annoncés sur Internet
منابع مشابه
Cross Diffusion Preventing Blow-Up in the Two-Dimensional Keller-Segel Model
Abstract. A (Patlak-) Keller-Segel model in two space dimensions with an additional crossdiffusion term in the equation for the chemical signal is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical substance. This allows one to prove, for arbitrarily small cross diffusion, the global existence of ...
متن کاملConservative cross diffusions and pattern formation through relaxation
This paper is aimed at studying the formation of patches in a cross-diffusion system without reaction terms when the diffusion matrix can be negative but with positive self-diffusion. We prove existence results for small data and global a priori bounds in space-time Lebesgue spaces for a large class of ’diffusion’ matrices. This result indicates that blow-up should occur on the gradient. One ca...
متن کاملThe boundedness-by-entropy method for cross-diffusion systems
The global-in-time existence of bounded weak solutions to a large class of physically relevant, strongly coupled parabolic systems exhibiting a formal gradient-flow structure is proved. The main feature of these systems is that the diffusion matrix may be generally neither symmetric nor positive semidefinite. The key idea is to employ a transformation of variables, determined by the entropy den...
متن کاملAnalysis of a Parabolic Cross-diffusion Population Model without Self-diffusion
The global existence of non-negative weak solutions to a strongly coupled parabolic system arising in population dynamics is shown. The cross-diffusion terms are allowed to be arbitrarily large, whereas the self-diffusion terms are assumed to vanish. The last assumption complicates the analysis since these terms usually provide H estimates of the solutions. The existence proof is based on a pos...
متن کاملThe global existence of a parabolic cross-diffusion system with discontinuous coefficients
This paper deals with a one-dimensional parabolic cross-diffusion system describing two-species models. The system under consideration is strongly coupled and the coefficients of the equations are allowed to be discontinuous. The existence and uniqueness of nonnegative global solutions are given when one of the cross-diffusion pressures is zero. Our approach to the problem is by an approximatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2015